非線形回帰分析 - 101

線形回帰の場合,残差の平方和がδの二乗に従うか?

切片を定数とした場合の最小二乗

線形の式,

まずは,\(\Large \displaystyle y_i =a_0 + a_1 x_i \),からスタートします.

傾きを固定したので,傾きの固定した値によって,切片,a0,がどのような最適解になるかを調べます.

\(\Large \displaystyle \sum_{i=1}^n \left( y_i - a_0 - a_1 x_i \right)^2 \)

が最小になればいいので,

\(\Large \displaystyle \frac{ \partial}{ \partial a_1} \sum_{i=1}^n \left( y_i - a_0 - a_1 x_i \right)^2 =0 \)

となる,a1,を求めます.

\(\Large \displaystyle = \frac{ \partial}{ \partial a_1} \left[ \sum_{i=1}^n y_i^2
+\sum_{i=1}^n a_0^2 +\sum_{i=1}^n ( b x_i)^2
- 2 \sum_{i=1}^n y_i a_0 -2 \sum_{i=1}^n a_1 x_i y_i +2 \sum_{i=1}^n a_0 a_1 xi
\right] \)

a1,が含まれていない項は微分で0となるので,

\(\Large \displaystyle = \frac{ \partial}{ \partial a_1} \left[
a_1^2 \sum_{i=1}^n x_i^2 -2 a_1\sum_{i=1}^n xi y_i +2 a_0 a_1\sum_{i=1}^n xi
\right] \)

\(\Large \displaystyle = 2 a_1 \sum_{i=1}^n x_i^2 - 2 \sum_{i=1}^n x_i y_i +2 a_0 \sum_{i=1}^n xi \)

\(\Large \displaystyle = 2 n a_1 \bar{x^2} - 2 n \overline{x y} +2 a_0 \bar{ x} =0 \)

\(\Large \displaystyle a_{1a_0} = \frac{\overline{x y} - a_0 \bar{ x}}{ \bar{x^2}} \)

となります.

ここで,a0,を変化させたときの残差は,

\(\Large \displaystyle \sum_{i=1}^n \left( y_i - a_{0} - a_{1 a_0}x_i \right)^2 \)

\(\Large \displaystyle = \sum_{i=1}^n \left( y_i - a_{0} - \frac{\overline{x y} - a_0 \bar{ x}}{ \bar{x^2}} x_i \right)^2 \)

\(\Large \displaystyle = \sum_{i=1}^n \left( \frac{ \bar{x^2} y_i - a_{0} \bar{x^2}- \overline{x y} x_i + a_0 \bar{ x} x_i}{ \bar{x^2}} \right)^2 \)

\(\Large \displaystyle = \sum_{i=1}^n \left( \frac{ \bar{x^2} y_i- \overline{x y} x_i + a_{0} ( \bar{ x} x_i - \bar{x^2}) }{ \bar{x^2}} \right)^2 \)

 

ここでa1,を推定値からの偏差,δ,で表すと,

\(\Large \displaystyle a_0 = \hat{a_0} + \delta \)

となるので,

\(\Large \displaystyle = \frac{1}{ \bar{x^2}^2} \sum_{i=1}^n \left\{ \bar{x^2} y_i- \overline{x y} x_i + (\hat{a_0} + \delta) ( \bar{ x} x_i - \bar{x^2}) \right\}^2 \)

δで整理すると,

\(\Large \displaystyle = \frac{1}{ \bar{x^2}^2} \sum_{i=1}^n \left\{ ( \bar{ x} x_i - \bar{x^2}) \delta +(\bar{x^2} y_i- \overline{x y} x_i) + \hat{a_0} ( \bar{ x} x_i - \bar{x^2}) \right\}^2 \)

と整理できます.

次に,δ2,δ1,δ0,と分けて考えていきましょう.

 

・δ2

\(\Large \displaystyle = \frac{1}{ \bar{x^2}^2} \sum_{i=1}^n \left[ ( \bar{ x} x_i - \bar{x^2}) \right]^2 \)

\(\Large \displaystyle = \frac{1}{ \bar{x^2}^2} \sum_{i=1}^n \left[ \bar{ x}^2 x_i^2 - 2 \bar{x} x_i \bar{x^2} +(\bar{x^2})^2 \right]^2 \)

\(\Large \displaystyle = \frac{n}{ \bar{x^2}^2} \left[ \bar{ x}^2 \bar{x_i^2} - 2 \bar{x}^2 \bar{x^2} +(\bar{x^2})^2 \right]^2 \)

\(\Large \displaystyle = \frac{n}{ \bar{x^2}^2} \left[ (\bar{x^2})^2 - \bar{ x}^2 \bar{x^2} \right]^2 \)

\(\Large \displaystyle = \frac{n \left[ \bar{x^2} - \bar{x}^2 \right] }{ \bar{x^2}} \)

となります.

 

・δ1

\(\Large \displaystyle \frac{2}{ \bar{x^2}^2} \sum_{i=1}^n \left[ ( \bar{ x} x_i - \bar{x^2}) \left\{ (\bar{x^2} y_i- \overline{x y} x_i) + \hat{a_0} ( \bar{ x} x_i - \bar{x^2}) \right\} \right] \)

\(\Large \displaystyle = \frac{2}{ \bar{x^2}^2} \sum_{i=1}^n \left[ \bar{x} x_i \bar{x^2} y_i - \bar{x} x_i \overline{xy} x_i
- ( \bar{x^2} )^2 y_i +\bar{x^2} \overline{xy} x_i
+ \hat{a_0} ( \bar{ x} x_i - \bar{x^2})^2 \right] \)

\(\Large \displaystyle = \frac{2}{ \bar{x^2}^2} \sum_{i=1}^n [ \bar{x} x_i \bar{x^2} y_i - \bar{x} x_i \overline{xy} x_i
- ( \bar{x^2} )^2 y_i +\bar{x^2} \overline{xy} x_i \)

\(\Large \displaystyle \hspace{70 pt} + \hat{a_0} ( \bar{ x} x_i)^2 - 2 \hat{a_0} \bar{ x} x_i \bar{x^2}+ \hat{a_0}(\bar{x^2})^2 ] \)

\(\Large \displaystyle = \frac{2 n}{ \bar{x^2}^2} [ \bar{x} \bar{x^2} \overline{xy} - \bar{x} \bar{x^2} \overline{xy}
- ( \bar{x^2} )^2 \bar{y} + \bar{x} \bar{x^2} \overline{xy} \)

\(\Large \displaystyle \hspace{70 pt} + \hat{a_0} \bar{ x}^2 \bar{x^2} - 2 \hat{a_0} \bar{ x}^2 \bar{x^2}+ \hat{a_0}(\bar{x^2})^2 ] \)

となります.同じ項目を色分けすると,

\(\Large \displaystyle = \frac{2 n}{ \bar{x^2}^2} [\color{blue}{ \bar{x} \bar{x^2} \overline{xy} - \bar{x} \bar{x^2} \overline{xy} }
- ( \bar{x^2} )^2 \bar{y} + \color{blue}{\bar{x} \bar{x^2} \overline{xy}} \)

\(\Large \displaystyle \hspace{70 pt} \color{red}{+ \hat{a_0} \bar{ x}^2 \bar{x^2} - 2 \hat{a_0} \bar{ x}^2 \bar{x^2}}+ \hat{a_0}(\bar{x^2})^2 ] \)

\(\Large \displaystyle = \frac{2 n}{ \bar{x^2}^2} \left[ \bar{x} \bar{x^2} \overline{xy} - ( \bar{x^2} )^2 \bar{y} - \hat{a_0} \bar{ x}^2 \bar{x^2}+ \hat{a_0}(\bar{x^2})^2 \right] \)

\(\Large \displaystyle = \frac{2 n}{ \bar{x^2}^2} \left[ \bar{x} \bar{x^2} \overline{xy} - ( \bar{x^2} )^2 \bar{y} + \hat{a_0} \bar{x^2} \left\{ \bar{x^2} -\bar{ x}^2 \right\} \right] \)

ここから,

\(\Large\displaystyle \hat{a_0} = \bar{y} - \frac{ \overline{x y} - \bar{x} \bar{y} }
{ \displaystyle \overline{x^2}- \bar{x}^2} \bar{x}\)

なので,

\(\Large \displaystyle = \frac{2 n}{ \bar{x^2}^2} \left[ \bar{x} \bar{x^2} \overline{xy} - ( \bar{x^2} )^2 \bar{y}
+ \left\{ \bar{y} -\frac{ \overline{x y} - \bar{x} \bar{y} } { \displaystyle \overline{x^2}- \bar{x}^2} \bar{x} \right\} \bar{x^2} \left\{ \bar{x^2} -\bar{ x}^2 \right\} \right] \)

\(\Large \displaystyle = \frac{2 n}{ \bar{x^2}^2} \left[ \bar{x} \bar{x^2} \overline{xy} - ( \bar{x^2} )^2 \bar{y}
+ \bar{x^2} \bar{y} \left\{ \bar{x^2} -\bar{ x}^2 \right\}
-( \overline{xy} - \bar{x} \bar{y} ) \bar{x} \bar{x^2} \right] \)

\(\Large \displaystyle = \frac{2 n}{ \bar{x^2}^2} \left[ \bar{x} \bar{x^2} \overline{xy} - ( \bar{x^2} )^2 \bar{y}
+ \bar{x^2} (\bar{y})^2 - (\bar{ x}^2)^2 \bar{x^2} \bar{y}
- \bar{x} \bar{x^2} \overline{xy}+ (\bar{x})^2 \bar{x^2} \bar{y} \right] \)

となります.同じ項目を色分けすると,

\(\Large \displaystyle = \frac{2 n}{ \bar{x^2}^2} \left[ \color{purple}{\bar{x} \bar{x^2} \overline{xy}} \color{red}{- ( \bar{x^2} )^2 \bar{y}
+ \bar{x^2} (\bar{y})^2} \color{blue}{- (\bar{ x}^2)^2 \bar{x^2} \bar{y} }
\color{purple}{- \bar{x} \bar{x^2} \overline{xy}}+ \color{blue}{(\bar{x})^2 \bar{x^2} \bar{y}} \right] \)

とちょうどキャンセルするので,,となります

 

・δ0

すいません,これ,かなり厄介な計算なので,省きます...

ただ,δ0なので,δ=0,の条件になるので,

\(\Large \displaystyle a_0 = \hat{a_0} + \delta \)

\(\Large \displaystyle a_0 = \hat{a_0} + 0 \)

\(\Large \displaystyle a_0 = \hat{a_0} \)

δ0の項は,

\(\Large \displaystyle \sum_{i=1}^n (y_i - \hat{a_0} - \hat{a_1} x_i)^2 =Se \)

となります.

 

・結果

まとめると,a0,を変化させたときの残差は,

\(\Large \displaystyle \sum_{i=1}^n \left( y_i - a_{0} - a_{1b} x_i \right)^2 = Se + \frac{n \left[ \bar{x^2} - \bar{x}^2 \right] }{ \bar{x^2}} \delta^2 \)

となります.

ここで,これらのサイト,サイトサイトでお示ししたように,\(\Large \displaystyle \hat{a_0} \)の分散は,

\(\Large \displaystyle V \left[ \hat{a_0} \right] =\sigma^2 \frac{\sum_{i=1}^{n} x_i^2 }{n \sum_{i=1}^{n} \left( x_i - \bar{x} \right)^2} \)

\(\Large \displaystyle \sigma^2 = \frac{E \left[ \sum_{i=1}^n \hat{u_i}^2 \right]}{n-2} = s^2 \)

\(\Large \displaystyle y_i = \hat{a_0} + \hat{a_1} x_i + \hat{u_i} \)

から,

\(\Large \displaystyle \hat{u_i} = y_i - \hat{a_0} - \hat{a_1} x_i \)

\(\Large \displaystyle \sigma^2 = \frac{E \left[ \sum_{i=1}^n \hat{u_i}^2 \right]}{n-2} =\frac{ \sum_{i=1}^n (y_i - \hat{a_0} - \hat{a_1} x_i)^2 }{n-2} \)

\(\Large \displaystyle V \left[ \hat{a_0} \right] = \frac{\sigma^2 }{\sum_{i=1}^{n} \left( x_i - \bar{x} \right)^2}
= \frac{\sum_{i=1}^{n} x_i^2 \sum_{i=1}^n (y_i - \hat{a_0} - \hat{a_1} x_i)^2 }{n (n-2) \sum_{i=1}^{n} \left( x_i - \bar{x} \right)^2} \)

となります.ここでシフト量,δの二乗が,\(\Large \displaystyle V \left[ \hat{a_0} \right] \),の場合は,

\(\Large \displaystyle \sum_{i=1}^n \left( y_i - a_{0b} - a_1 x_i \right)^2 = Se + \frac{n \left[ \bar{x^2} - \bar{x}^2 \right] }{ \bar{x^2}} \delta^2 \)

\(\Large \displaystyle = Se + \frac{n \left[ \bar{x^2} - \bar{x}^2 \right] }{ \bar{x^2}} \frac{\sum_{i=1}^{n} x_i^2 \sum_{i=1}^n (y_i - \hat{a_0} - \hat{a_1} x_i)^2 }{n (n-2) \sum_{i=1}^{n} \left( x_i - \bar{x} \right)^2} \)

\(\Large \displaystyle = Se + \frac{\sum_{i=1}^n (y_i - \hat{a_0} - \hat{a_1} x_i)^2 }{ n-2} \)

となり,第二項が,ここ,で説明した,

\(\Large \displaystyle Ve = \frac{1}{n-2} \sum_{i=1}^{n} \left(y_i -\hat{a_0} - \hat{a_1} x_i \right)^2 = \frac{Se}{n-2} \)

と等しくなり,結果として,

\(\Large \displaystyle S_{SE} = Se + Ve \)

が成り立つことになります.

非線形回帰のメインページに戻る

l t